Chemistry of chromium-selenium complexes. Thermolytic degradation of $\mathrm{Cp}_{2} \mathrm{Cr}_{\mathbf{2}}(\mathbf{C O})_{4} \mathrm{Se}$, and the crystal structures of the cubane-like clusters $\mathrm{Cp}_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ and $\mathrm{Cp}_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$

Lai Yoong Goh
Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)

and Thomas C.W. Mak
Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T. (Hong Kong)
(Received July 29th, 1988)

Abstract

Thermolysis of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{Se}(1)$ solution gave initially $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3}$ (3), and a thermally labile unidentified species, which on further degradation afforded a mixture of products, from which more of 3 , and the cubane-like complexes $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}$ (2) and $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$ (4) were isolated. A more prolonged thermolysis in THF yielded $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}$ (5) as the main product. Crystal data: 2, monoclinic, space group $C 2 / c, a 17.656(5), b$ 8.232(1), $c 18.079(6) \AA, \beta 126.15(2)^{\circ}$, $Z=4, R=0.075$ for 1499 observed Mo- K_{α} data; 4, monoclinic, space group $P 2_{1} / c$, a 14.08(1), b 10.306(8), c 15.212(6) $\AA, \beta 103.55(2)^{\circ}, Z=4, R=0.082$ for 1711 observed Mo-K data. Both complexes possess a cubane-like structure with triply bridging Se and CO or O ligands at alternating corners of the cuboid.

Introduction

Rational synthetic approaches in cluster chemistry often involve main-group non-metal elements as bridging ligands [1-3]. Vahrenkamp [1,4,5], Adams [6], and Markó [7] have made extensive use of the uncoordinated electron pairs of the sulfido ligand to couple together small metal carbonyl units in order to build up and expand the cluster framework (eq. 1).
$\mathbf{M}_{m} \mathbf{E}:+\mathbf{M}_{n}{ }^{\prime} \rightarrow \mathbf{M}_{m}(\mu-\mathbf{E}) \mathbf{M}_{n}{ }^{\prime}$
We have previously shown [8] that the self-condensation of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{~S}$ and $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{5} \mathrm{~S}_{2}$ under thermolytic conditions, to form $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{~S}_{2}$ and
$\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{~S}_{4}$, respectively, can be rationalised on the basis of the above postulated mechanistic pathway. We now describe the thermolysis of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{Se}$ (1), which yields the stable clusters $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}$ (2), $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3}$ (3), $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$ (4) and $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}$ (5), and present the X-ray structures of 2 and 4 .

Experimental

All general procedures and spectral recordings were as described previously [8]. Elemental analysis were performed by the Analytical unit of the Australian National University, or Pascher Laboratories of Bonn, Germany. Cr was sometimes determined spectrophotometrically as $\mathrm{CrO}_{4}{ }^{2-}$ [9] in our laboratory.
$\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}$ was prepared as described by Manning [10]. Elemental black selenium was H \& W analar grade. Silica gel, Merck Kieselgel 60, and Silanised Kieselgel 60 were activated at $140^{\circ} \mathrm{C}$ overnight before chromatographic use.

Thermolysis of 1. An orange-brown solution of 1 in toluene (60 ml), prepared $[11,12]$ in situ from $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{6}(1.0 \mathrm{~g}, 2.49 \mathrm{mmol})$ and black $\mathrm{Se}_{8}(400 \mathrm{mg}, 5.07$ mmol), was filtered to remove residual Se_{8} and refluxed under argon for 30 min . The resultant mixture consisted of fine black solids of $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3}(3)(182 \mathrm{mg}$, $0.239 \mathrm{mmol}, 19 \%$ yield), suspended in a brownish-green solution. Anal. Found for 3: C, 34.21; $\mathrm{H}, 2.68$; $\mathrm{Cr}, 27.51$; $\mathrm{Se}, 31.27 .\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3} . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{3}$ calcd.: $\mathrm{C}, 34.71 ; \mathrm{H}, 2.65 ; \mathrm{Cr}, 27.32 ; \mathrm{Se}, 31.12 \%$. On thermolysis or prolonged standing at ambient temperature, a solution of 3 in $\mathrm{C}_{6} \mathrm{D}_{6}$ was found to be converted into mainly $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}$ (5).

The NMR spectrum of the mother-liquor showed the signals from 3 , along with two other $\mathrm{C}_{5} \mathrm{H}_{5}$ resonances, $\delta 4.24$ and $\delta 5.24\left(\nu_{\frac{1}{2}} 33 \mathrm{~Hz}\right)$, respectively, with relative integrals of $1 / 4 / 12$. Tests showed that this product mixture was still thermally labile, and so the reaction was allowed to proceed for a further 1.5 h at $60-70^{\circ} \mathrm{C}$ until the solution had turned brown-black. This solution now showed the resonances of 2 and 3 and $\delta 4.24,5.12\left(\nu_{1 / 2} 40 \mathrm{~Hz}\right)$ and -5.6 , with relative intensities of ca. $2 / 2 / 1 / 1 / 0.4$. Filtration removed a green insoluble solid (60 mg), presumably either condensed $\mathrm{Cr}_{m} \mathrm{Se}_{n}$ solids or paramagnetic $(\mathrm{CpCr})_{m} \mathrm{Se}_{n}$ species, since it possessed neither proton resonances in the NMR nor any characteristic bands in the IR spectra. Chromatography of the filtrate on a silica-gel column ($34 \times 2.5 \mathrm{~cm}$) gave three fractions: (i) a yellowish green eluate in n-hexane/toluene (60 ml); (ii) a black eluate in $1 / 1$ toluene/ether (60 ml); and (iii) a brownish green eluate in THF (40 ml).

Fraction (i). Removal of solvents gave a deep green oily residue, ($180 \mathrm{mg}, 33 \%$ yield, based on $29.5 \% \mathrm{Cr}$ content), possessing proton resonances at $\delta 4.25$ and -5.61 (relative intensity ca. $5 / 1$) in the NMR spectrum. This species was unstable in solution and attempted recrystallisation in n-hexane/ether at $-30^{\circ} \mathrm{C}$ gave several degradation species including 3.

Fraction (ii). Concentration to dryness gave a black residue (296 mg) consisting of a $5 / 2$ molar mixture of 2 and 3 together with small amounts of two other unidentified Cp-containing species. Rechromatography of this mixture on silanised silica gel column ($20 \times 2.5 \mathrm{~cm}$), involving elution with n-hexane/toluene (60 ml), gave black solids, consisting mainly of 3 , ($200 \mathrm{mg}, 0.26 \mathrm{mmol}, 21 \%$ yield) contaminated with an unidentified carbonyl Cp -containing species. Further elution with $1 / 1$ toluene/ether gave a brown solution (50 ml), which afforded impure 2 as black
crystals ($60 \mathrm{mg}, 0.088 \mathrm{mmol}, 7.0 \%$). The next fraction in $1 / 2$ toluene-ether (30 ml), brown-black in colour, gave a further amount of $2(40 \mathrm{mg}, 0.060 \mathrm{mmol}, 4.8 \%)$. Both batches of 2 were contaminated with trace quantities of 3 and other species. Recrystallisation from n-hexane/THF at $-30^{\circ} \mathrm{C}$ gave pure 2 as fine black crystals. Anal. Found for 2: C, 37.04; H, 3.17; Cr, 30.16; $\mathrm{Se}, 23.0 .\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}$. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$, calcd.: $\mathrm{C}, 38.73 ; \mathrm{H}, 2.95 ; \mathrm{Cr}, 30.48 ; \mathrm{Se}, 23.15 \%$. A solution in $\mathrm{C}_{6} \mathrm{D}_{6}$ was found to have deposited solids of 5 after 16 h ambient temperature or 2 h at $50^{\circ} \mathrm{C}$.

Fraction (iii). This gave a deep green solid, 4 ($62 \mathrm{mg}, 0.094 \mathrm{mmol}, 7.6 \%$ yield). Anal. Found for 4: $\mathrm{C}, 37.01 ; \mathrm{H}, 3.02, \mathrm{Cr}, 32.46 .\left(\mathrm{C}_{5} \mathrm{H}_{5}\right){ }_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2} . \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$, calcd.: C, 36.49 ; H, 3.06; Cr, 31.60\%.

In a separate thermolysis reaction of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{Se}(212 \mathrm{mg}, 0.5 \mathrm{mmol})$ in THF $(30 \mathrm{ml}), 3 \mathrm{~h}$ reflux produced a black precipitate consisting mainly of $5(82 \mathrm{mg}$, ca. $0.1 \mathrm{mmol}, 40 \%$. Anal. Found for 5: C, 30.83; $\mathrm{H}, 2.63$; $\mathrm{Cr}, 26.12$; $\mathrm{Se}, 40.2$. $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}, \mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cr}_{4} \mathrm{Se}_{4}$, calcd.: C, 30.63; H, 2.57; $\mathrm{Cr}, 26.52$; $\mathrm{Se}, 40.28 \%$. The NMR spectrum of the mother liquor showed the presence of a $1 / 1 / 2$ molar mixture of 2,3 and 5 , along with a small amount of the unstable intermediate ($\delta 4.24$, -5.6).

Crystal structure analysis

Diffraction-quality crystals of 2 (diamond-shaped plates) and 4 (chunky polyhedra) were deposited from saturated solutions in toluene/THF during 5 weeks at ambient temperature in a dry box. Diffraction measurements were made on a Nicolet R3m four-circle diffractometer (graphite-monochromatized Mo- K_{α} radiation, $\lambda 0.71069(\AA)$, and the crystal class, orientation matrix, and accurate unit-cell parameters were determined by standard procedures [13]. Intensities were recorded at $22^{\circ} \mathrm{C}$, and data collection and processing parameters are summarized in Table 1. Application of absorption corrections was based on a pseudo-ellipsoidal fit to azimuthal scans of selected strong reflections over a range of 2θ values $[14,15]$. The intensities were processed by the learnt-profile procedure [16].

Structure solution of 4 was accomplished by means of Patterson superposition and Fourier methods. In compound 2, which is isomorphous with its S analogue [8], the tetranuclear molecule lies on a two-fold axis, and the triply-bridging ligands are statistically distributed over four sites in such a way that the Se and C atoms are superposed on each other. The scattering power of the disordered groups is accounted for by half-oxygen atoms $O(1)$ and $O(2)$, and fractional selenium atoms $\operatorname{Se}(1)$ and $\operatorname{Se}(2)$, each tied to a variable site occupancy factor which necessarily exceeds $1 / 2$. All non-hydrogen atoms in the asymmetric unit were subjected to anisotropic refinement. The hydrogen atoms of the cyclopentadienyl groups were generated geometrically ($\mathrm{C}-\mathrm{H}$ fixed at $0.96 \AA$) and included in structure factor calculations with assigned isotropic thermal parameters.

All computations were performed on a Data General Nova 3/12 minicomputer with the SHELXTL system [17]. Analytic expressions of neutral-atom scattering factors incorporating the real and imaginary components of anomalous dispersion were employed [18]. Blocked-cascade least-squares refinements [19] converged to the R indices and other parameters listed in Table 1.

Tables of hydrogen cation coordinates thermal parameters and lists of observed and calculated structure factors are available from the authors.
Table 1
Data collection and processing parameters

Results and discussion

Thermolytic degradation of 1

Thermolysis of an orange-brown solution of 1 in refluxing toluene for 0.5 h , produced 3, in 19% yield, as a fine black solid suspended in a brownish green solution of a thermally labile cyclopentadienylchromium carbonyl species with $\delta(\mathrm{Cp}) 4.24$ and 5.24 . On further thermolysis, a mixture of 2,3 , and other labile Cp-containing species was formed, along with some green insoluble non-characteriseable solids, presumably of polymeric $\mathrm{Cr}_{m} \mathrm{Se}_{n}$ or some paramagnetic cyclopentadienyl chromium compounds.

Chromatography on silica gel initially separated 3 fractions, which gave: (a) a deep green unstable oil (33% yield), with proton resonances at $\delta 4.24,-5.61$ (relative intensity $5 / 1$); (b) a dark brown mixture of $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}$ (2) and $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3}$ (3), with minor unidentified contaminants; and (c) dark green crystals of $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$ (4) (7.6% yield). Since the NMR spectral characteristics of 4 were not observed in the thermolysis product solution prior to chromatography, it must have arisen from the reaction of the intermediate " $\delta 5.12, \nu_{1 / 2} 40 \mathrm{~Hz}$ " with $\mathrm{H}_{2} \mathrm{O}$ or OH groups present in the silica gel of the column. The formation of μ_{3}-oxo clusters from the reaction of cyclopentadienyl-transition metal carbonyls with $\mathrm{H}_{2} \mathrm{O}$ is not unprecedented [20].

Rechromatography of the middle fraction on silanised silica-gel, separated 3 from 2, which was recrystallised from THF/n-hexane at $-30^{\circ} \mathrm{C}$ to give pure fine black crystals (11.8% yield). The total overall yield of 3 was ca. 40%.

A more exhaustive thermolysis reaction involving 3 h refluxing in THF produced ca. 60% yield of 5 mixed with 2,3 and the unstable species ($\delta 4.24,-5.6$). The high yield of 5 is in agreement with the NMR spectral observations that 2 and 3, are all converted mainly into 5 on prolonged standing in solution either at ambient or elevated temperatures. Thus, unlike the formation of $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{~S}_{2}$, the S -analogue of 2 , which was suggested to occur via a simple intermolecular coupling of two molecules of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{~S}[8]$, the thermolytic breakdown of $\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO})_{4} \mathrm{Se}(1)$ involves more complicated pathways, involving several labile intermediates.

Spectra

The spectra data for the various complexes are given in Table 2. It will be noted that there is a striking similarity between the mass spectral fragmentation pattern and the NMR and IR spectroscopic data of $\mathrm{Cp}_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (2) and its S analogue, which possessed C p resonances at $\delta 9.95,5.65\left({ }^{1} \mathrm{H}\right)$; and 99.29 and 91.88 $\left({ }^{13} \mathrm{C}\right)$ and $\nu\left(\mu_{3}-\mathrm{CO}\right) 1645 \mathrm{vs} \mathrm{cm}^{-1}$ [8]. Like its S analogue, 2 also exhibits variable temperature (VT) NMR behaviour. As the temperature is lowered, the Cp proton singlet resonances sharpen and approach, but do not coalesce even at $-90^{\circ} \mathrm{C}$. The origin of this VT behaviour, also shown by 3 and 4, is not clear and is under further investigation. Like 2, $\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{3}$ (3) also possesses two non-equivalent Cp rings, and a $\mu_{3}-\mathrm{CO}$ bridging group is observed in the IR spectrum at $1620 \mathrm{~s}, 6 \mathrm{br}^{-1}$. In contrast, $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}$ (4) shows only one broad Cp resonance throughout the range $-90^{\circ} \mathrm{C}\left(\delta-13.52, \nu_{1 / 2} 171 \mathrm{~Hz}\right)$ to $60^{\circ} \mathrm{C}\left(\delta 6.02, \nu_{1 / 2} 55 \mathrm{~Hz}\right)$. Judging from the broad appearance of these resonances, 4 could possibly possess some degree of paramagnetism, as was found for the antiferromagnetic distorted cubane $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$
Table 2
Spectral data

Complex	NMR ${ }^{\text {a }}$		IR (KBr) $\mathrm{cm}^{-1 b}$	Mass spectra ${ }^{c}, m / e\left(f o r ~{ }^{80} \mathrm{Se}\right.$) [assignments]
	${ }^{1} \mathrm{H}(\delta)$	${ }^{13} \mathrm{C}(8)$		
2	(9.73 ($\left.\left.p_{1 / 2}, 31 \mathrm{~Hz}\right), 5.49\right)^{d}$	98.79, 90.25	$\nu(\mathrm{CO}) 1630 \mathrm{vs}$; other bands, $1420 \mathrm{~m}, 1010 \mathrm{~m}, 835 \mathrm{~m}$ sh, $800 \mathrm{vs}, 560 \mathrm{vw}$ vbr (unresolved), 495m	$788\left[\mathrm{CP}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right], 723\left[\mathrm{CP}_{3} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right]$, $708\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{3}\right], 684\left[\mathrm{CP}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}\right]$, $656\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO}) \mathrm{Se}_{2}\right], 628\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{2}\right]$, $591\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4}(\mathrm{CO}) \mathrm{Se}_{2}\right], 511\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3} \mathrm{Se}_{2}\right]$, $446\left[\mathrm{Cp}_{2} \mathrm{Cr}_{3} \mathrm{Se}_{2}\right], 329\left[\mathrm{CPCr}_{2} \mathrm{Se}_{2}\right]$, 184 [$\mathrm{Cr}_{2} \mathrm{Sel}^{2}, 182$ [$\left.\mathrm{Cp}_{2} \mathrm{Cr}\right]$,
3	$\begin{aligned} & \left(17.7\left(\nu_{1 / 2} 70 \mathrm{~Hz}\right), 3.72\left(\nu_{1 / 2} 12 \mathrm{~Hz}\right)\right)^{e} \\ & \left(17.62\left(\nu_{1 / 2} 70 \mathrm{~Hz}\right), 3.66\left(\nu_{1 / 2} 10 \mathrm{~Hz}\right)\right)^{\prime} \end{aligned}$	93.64, 83.95 $(99.18,91.00)^{g}$	$p(\mathrm{CO}) 1620 \mathrm{vs}$, br; other bands, 1420 m , br; 1005 m 800vs	$788\left[\mathrm{CP}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right], 723\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right]$, $708\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{3}\right], 656\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO}) \mathrm{Se}_{2}\right]$, $643\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4} \mathrm{Se}_{3}\right], 591\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4}(\mathrm{CO}) \mathrm{Se}_{2}\right]$, $511\left[\mathrm{Cp}_{3} \mathrm{Cr}_{3} \mathrm{Se}_{2}\right], 446\left[\mathrm{C}_{2} \mathrm{Cr}_{3} \mathrm{Se}_{2}\right]$, $394\left[\mathrm{Cp}_{2} \mathrm{Cr}_{2} \mathrm{Se}_{2}\right], 342\left[\mathrm{Cp}_{2} \mathrm{Cr}_{2}(\mathrm{CO}) \mathrm{Se}\right], 184$ $\left[\mathrm{Cr}_{2} \mathrm{Se}\right], 182\left[\mathrm{Cp}_{2} \mathrm{Cr}\right]$
4	$\begin{aligned} & 2.44\left(\nu_{1 / 2} 70 \mathrm{~Hz}\right)^{n} ;\left(-13.52\left(\nu_{1 / 2} 171 \mathrm{~Hz}\right),\right. \\ & -0.80\left(\nu_{1 / 2} 64 \mathrm{~Hz}\right) \text {, and } 4.44\left(\nu_{1 / 2} 57 \mathrm{~Hz}\right) \\ & \left.6.02\left(\nu_{1 / 2} 55 \mathrm{~Hz}\right)\right)^{\prime} \end{aligned}$		1645w, vbr; 1430m; 1386w; 1355vw; 1264w; 1110w (unresolved from 1057 and 1052), 1010s; 843 m sh , 794vs; 572m, sh; 554s.	$660\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}\right]$, $595\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}\right]$, $580\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}\right], 530\left[\mathrm{Cp}_{2} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}\right]$, $515\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}\right], 465\left[\mathrm{CpCr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}\right]$, $450\left[\mathrm{Cp}_{2} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}\right], 400\left[\mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}\right]$, $332\left[\mathrm{Cr}_{3} \mathrm{OSe}_{2}\right], 184\left[\mathrm{Cr}_{2} \mathrm{Se}\right], 182\left[\mathrm{Cp}_{2} \mathrm{Cr}\right]$
5	5.13		1620 w , vbr; 1420m; 1350vw; 1060 vw ; 1015 w ; 1000 m ; 890 vw sh; $880 \mathrm{~m} ; 920 \mathrm{~m}$ sh, 790 vs	$\begin{aligned} & 788\left[\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right], 723\left[\mathrm{Cp}_{3} \mathrm{Cr}_{4} \mathrm{Se}_{4}\right], \\ & 658\left[\mathrm{Cp}_{2} \mathrm{Cr}_{4} \mathrm{Se}_{4}, 593\left[\mathrm{CpCr}_{4} \mathrm{Se}_{4}\right],\right. \\ & 528\left[\mathrm{Cr}_{4} \mathrm{Se}_{4}\right] \end{aligned}$

[^0]

Fig. 1. Perspective view of the molecular structure of 2 with atom labelling. The thermal ellipsoids are drawn at the 30% probability level. The primed and unprimed atoms are related by two-fold rotation symmetry, and two cyclopentadienyl rings and the disordered O atoms have been omitted for clarity.
[21] and its derivative $\mathrm{CP}_{4} \mathrm{Cr}_{4} \mathrm{O}_{3}\left(\eta^{2}-\mathrm{C}_{5} \mathrm{H}_{4}\right)$ [22], which gave no signals or very broad featureless signals, respectively, in the NMR. Unlike 2 and 3, both of which readily lose the $\mu_{3}-\mathrm{CO}$ groups of the cuboid skeletal framework, the $\mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ core unit persists, as 4 successively loses its Cp rings in the mass fragmentation process. Bottomley [21b] has ascribed the observed instability of the Cp rings in $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$ to "the lack of electrons for π-backbonding to Cp ". In the IR spectrum,

Table 3
Atomic coordinates $\left(\times 10^{4}\right)$ and thermal parameters ${ }^{a}\left(\AA^{2} \times 10^{3}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$
(2)

Atom b	x	y	z	$U_{\text {eq }}$
$C r(1)$	$911(1)$	$498(2)$	$2716(1)$	$41(1)$
$C r(2)$	$317(1)$	$-1865(2)$	$3424(1)$	$42(1)$
$\operatorname{Se}(1)$	$506(2)$	$916(3)$	$3758(1)$	$46(1)$
$\mathrm{Se}(2)$	$1240(2)$	$-2257(3)$	$2860(2)$	$47(1)$
$\mathrm{O}(1)$	$769(1)$	$1656(25)$	$4189(12)$	$64(11)$
$\mathrm{O}(2)$	$1596(18)$	$-2972(31)$	$3062(16)$	$76(20)$
$\mathrm{C}(1)$	$2428(10)$	$664(22)$	$3340(10)$	$90(10)$
$C(2)$	$2232(12)$	$1945(24)$	$3669(11)$	$91(12)$
$C(3)$	$1551(11)$	$2883(18)$	$2909(11)$	$79(12)$
$C(4)$	$1438(10)$	$2271(18)$	$2195(8)$	$76(8)$
$C(5)$	$1967(10)$	$845(20)$	$2436(9)$	$85(10)$
$C(6)$	$1142(10)$	$-2088(8)$	$4939(8)$	$81(9)$
$C(7)$	$1322(9)$	$-3416(17)$	$4607(8)$	$75(8)$
$C(8)$	$503(11)$	$-4258(17)$	$4038(9)$	$81(10)$
$C(9)$	$158(11)$	$-3477(24)$	$4078(10)$	$102(11)$
$C(10)$	$168(11)$	$-2118(26)$	$4566(9)$	$107(12)$

[^1]Table 4
Selected bond lengths (\AA) and bond angles $(\mathrm{deg})^{a}$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (2)

$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$2.848(3)$	$\mathrm{Cr}(1)-\mathrm{Cr}\left(1^{\prime}\right)$	$2.828(4)$
$\mathrm{Cr}(1)-\mathrm{Cr}\left(2^{\prime}\right)$	$2.733(2)$	$\mathrm{Cr}(2)-\mathrm{Cr}\left(2^{\prime}\right)$	$2.830(4)$
$\mathrm{Cr}(1)-\mathrm{Se}(1)$	$2.402(4)$	$\mathrm{Cr}(1)-\mathrm{Se}\left(1^{\prime}\right)$	$2.369(2)$
$\mathrm{Cr}(1)-\mathrm{Se}(2)$	$2.317(3)$	$\mathrm{Cr}(2)-\mathrm{Se}(1)$	$2.341(3)$
$\mathrm{Cr}(2)-\mathrm{Se}(2)$	$2.400(5)$	$\mathrm{Cr}(2)-\mathrm{Se}\left(2^{\prime}\right)$	$2.350(3)$
$\mathrm{Se}(1)-\mathrm{O}(1)$	$0.88(2)$	$\mathrm{Se}(2)-\mathrm{O}(2)$	$0.78(2)$
$\mathrm{Cr}(1)-\mathrm{C}(1)$	$2.21(2)$	$\mathrm{Cr}(2)-\mathrm{C}(6)$	$2.22(1)$
$\mathrm{Cr}(1)-\mathrm{C}(2)$	$2.26(2)$	$\mathrm{Cr}(2)-\mathrm{C}(7)$	$2.21(1)$
$\mathrm{Cr}(1)-\mathrm{C}(3)$	$2.19(2)$	$\mathrm{Cr}(2)-\mathrm{C}(8)$	$2.19(1)$
$\mathrm{Cr}(1)-\mathrm{C}(4)$	$2.22(2)$	$\mathrm{Cr}(2)-\mathrm{C}(9)$	$2.24(2)$
$\mathrm{Cr}(1)-\mathrm{C}(5)$	$2.22(2)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$2.24(2)$
$\mathrm{Cr}(1)-\mathrm{Cr}(2)$	$1.35(3)$	$\mathrm{Cr} 7)-\mathrm{C}(8)$	$1.37(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.41(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.37(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.29(3)$	$\mathrm{C}(10)-\mathrm{C}(6)$	$1.37(3)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.40(2)$	$\mathrm{Cr}(2)-\mathrm{Cr}(1)-\mathrm{Cr}\left(2^{\prime}\right)$	$1.43(3)$
$\mathrm{C}(5)-\mathrm{C}(1)$	$1.34(2)$	$\mathrm{Cr}(1)-\mathrm{Cr}(2)-\mathrm{Cr}\left(1^{\prime}\right)$	$60.9(1)$
$\mathrm{Cr}(2)-\mathrm{Cr}(1)-\mathrm{Cr}\left(1^{\prime}\right)$	$57.6(1)$	$60.9(1)$	
$\mathrm{Cr}\left(1^{\prime}\right)-\mathrm{Cr}(1)-\mathrm{Cr}\left(2^{\prime}\right)$	$61.6(1)$	$\mathrm{Se}(1)-\mathrm{Cr}(2)-\mathrm{Cr}\left(2^{\prime}\right)$	$61.6(1)-\mathrm{Se}(2)$
$\mathrm{Cr}(1)-\mathrm{Cr}(2)-\mathrm{Cr}\left(2^{\prime}\right)$	$57.5(1)$	$102.9(1)$	
$\mathrm{Se}(1)-\mathrm{Cr}(1)-\mathrm{Se}\left(1^{\prime}\right)$	$104.8(1)$	$\mathrm{Se}(1)-\mathrm{Cr}(2)-\mathrm{Se}(2)$	$102.2(1)$
$\mathrm{Se}(2)-\mathrm{Cr}(1)-\mathrm{Se}\left(1^{\prime}\right)$	$107.3(1)$	$\mathrm{Ce}(2)-\mathrm{Cr}(2)-\mathrm{Se}\left(2^{\prime}\right)$	$104.7(1)$
$\mathrm{Se}(1)-\mathrm{Cr}(2)-\mathrm{Se}\left(2^{\prime}\right)$	$107.1(1)$	$\mathrm{Cr}(1)-\mathrm{Se}(2)-\mathrm{Cr}(2)$	$74.2(1)$
$\mathrm{Cr}(1)-\mathrm{Se}(1)-\mathrm{Cr}(2)$	$73.8(1)$	$\mathrm{Cr}(2)-\mathrm{Se}(2)-\mathrm{Cr}\left(2^{\prime}\right)$	$71.7(1)$
$\mathrm{Cr}(1)-\mathrm{Se}(1)-\mathrm{Cr}\left(1^{\prime}\right)$	$72.7(1)$	$73.1(1)$	
$\mathrm{Cr}(2)-\mathrm{Se}(1)-\mathrm{Cr}\left(1^{\prime}\right)$	$70.9(1)$		

${ }^{a}$ Primed atoms are generated by the symmetry transformation ($-x, y, \frac{1}{2}-z$).
the strongest vibrations at 794 vs and $554 \mathrm{~s} \mathrm{~cm}^{-1}$ can be attributed to core vibrations, equivalent to $750,551 \mathrm{~cm}^{-1}$ [23] and $545 \mathrm{~cm}^{-1}$ [21b] observed for $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$.

Structure of 2

A perspective view of the molecular structure of $\mathbf{2}$ is illustrated in Fig. 1. Atomic coordinates are listed in Table 3. Bond lengths and selected bond angles are given in

Fig. 2. Perspective view of the molecular structure of 4 with atom labelling. The thermal ellipsoids are drawn at the 30% probability level.

Table 5
Atomic coordinates $\left(\times 10^{4}\right)$ and thermal parameters ${ }^{a}\left(\AA^{2} \times 10^{3}\right)$ for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}(4)$

Atom	x	γ	z	$U_{\text {eq }}$
$\mathrm{Cr}(1)$	2807(2)	34(3)	428(2)	38(1)
$\mathrm{Cr}(2)$	2191(2)	2525(3)	1017(2)	39(1)
$\mathrm{Cr}(3)$	1784(2)	-25(3)	1761(2)	42(1)
$\mathrm{Cr}(4)$	3767(2)	911(3)	2323(2)	46(1)
$\mathrm{Se}(1)$	2322(2)	1985(2) ${ }^{-}$	2606(1)	60(1)
$\mathrm{Se}(2)$	3839(1)	1944(2)	880(1)	46(1)
O(1)	1651(8)	868(11)	645(6)	38(4)
O(2)	3080(8)	-557(12)	1672(7)	46(5)
C(1)	3255(17)	-237(22)	-893(13)	74(10)
C(2)	2273(16)	-240(23)	- 1064(12)	63(9)
C(3)	2015(18)	- 1320(23)	-614(14)	64(10)
C(4)	2798(17)	-1967(22)	- 168(14)	80(11)
C(5)	3613(19)	- 1303(28)	-307(14)	94(12)
C(6)	864(21)	3717(22)	400(18)	106(13)
C(7)	1268(18)	4272(23)	1146(14)	97(12)
C(8)	2169(20)	4655(25)	1086(22)	124(15)
C(9)	2248(26)	4340(25)	224(27)	152(22)
C(10)	1435(25)	3635(22)	- 135(14)	140(17)
C(11)	1017(15)	- 1922(21)	1513(12)	69(9)
C(12)	1533(16)	-1896(20)	2422(13)	60(8)
C(13)	1100(16)	-888(23)	2805(13)	72(10)
C(14)	367(16)	-290(23)	2157(13)	71(10)
C(15)	287(13)	-916(18)	1375(13)	54(8)
C(16)	5194(21)	-59(25)	2874(17)	99(13)
C(17)	4629(19)	-289(29)	3459(17)	119(14)
C(18)	4437(19)	938(36)	3797(13)	159(18)
C(19)	4916(26)	1776(28)	3373(21)	145(18)
C(20)	5341(20)	1172(35)	2865(20)	106(16)

${ }^{\text {a }}$ Equivalent isotropic temperature factor $U_{e q}$ defined as $1 / 3$ of the trace of orthogonalised U matrix.

Table 4. The structure belongs to a class of cubane-like clusters of chromium of which $\mathrm{Cp}_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{S}\right)_{4}$ [24] and $\mathrm{Cp}_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{CO}\right)_{2}\left(\mu_{3}-\mathrm{S}\right)_{2}$ [8] have recently been structurally characterised. Being isostructural with the latter, 2 has randomly distributed $\mu_{3}-\mathrm{Se}$ and $\mu_{3}-\mathrm{CO}$ groups alternating with Cr at the corners of a distorted cube. Such "cubane-like" assemblies of chalcogen atoms and CO ligands are still rare, and have not been noted for any other transition metal. A comparison of some selected bond lengths and angles of these and related complexes is given in Table 7. It is observed that the small difference between the bonding parameters of 2 and those of its S analogue are attributable to the size difference between Se and S ; both show a greater distortion from a regular cube than the parent compound $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{~S}_{4}$ [24].

Structure of 4

The perspective view of the molecule (shown in Fig. 2) reveals a cubane-like structure with two μ_{3}-oxo ligands, two $\mu_{3}-\mathrm{Se}$ atoms, and four $\mu_{3}-\mathrm{Cr}$ atoms alter-

Table 6
Selected bond lengths (\AA) and bond angles (deg) for $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Cr}_{4}\left(\mu_{3}-\mathrm{O}\right)_{2}\left(\mu_{3}-\mathrm{Se}\right)_{2}$ (4)

$\overline{\mathrm{Cr}}(1)-\mathrm{Cr}(2)$	2.916(4)	$\mathrm{Cr}(1)-\mathrm{Cr}(3)$	2.748 (4)
$\mathrm{Cr}(1)-\mathrm{Cr}(4)$	3.020(4)	$\mathrm{Cr}(2)-\mathrm{Cr}(3)$	2.970(4)
$\mathrm{Cr}(2)-\mathrm{Cr}(4)$	3.093(4)	$\mathrm{Cr}(3)-\mathrm{Cr}(4)$	2.887(4)
$\mathrm{Cr}(2)-\mathrm{Se}(1)$	2.445(3)	$\mathrm{Cr}(3)-\mathrm{Se}(1)$	2.462(4)
$\mathrm{Cr}(4)-\mathrm{Se}(1)$	2.441(4)	$\mathrm{Cr}(1)-\mathrm{Se}(2)$	2.447(3)
$\mathrm{Cr}(2)-\mathrm{Se}(2)$	2.452(4)	$\mathrm{Cr}(4)-\mathrm{Se}(2)$	2.462(3)
$\mathrm{Cr}(1)-\mathrm{O}(1)$	1.94(1)	$\mathrm{Cr}(2)-\mathrm{O}(1)$	1.90 (1)
$\mathrm{Cr}(3)-\mathrm{O}(1)$	1.90(1)	$\mathrm{Cr}(1)-\mathrm{O}(2)$	1.94(1)
$\mathrm{Cr}(3)-\mathrm{O}(2)$	1.94(1)	$\mathrm{Cr}(4)-\mathrm{O}(2)$	1.94(1)
$\mathrm{Cr}(1)-\mathrm{C}(1)$	2.26(2)	$\mathrm{Cr}(2)-\mathrm{C}(6)$	2.25(3)
$\mathrm{Cr}(1)-\mathrm{C}(2)$	2.24(2)	$\mathrm{Cr}(2)-\mathrm{C}(7)$	2.26(3)
$\mathrm{Cr}(1)-\mathrm{C}(3)$	2.21(2)	$\mathrm{Cr}(2)-\mathrm{C}(8)$	2.20(3)
$\mathrm{Cr}(1)-\mathrm{C}(4)$	2.25(2)	$\mathrm{Cr}(2)-\mathrm{C}(9)$	2.24(3)
$\mathrm{Cr}(1)-\mathrm{C}(5)$	2.25(3)	$\mathrm{Cr}(2)-\mathrm{C}(10)$	2.15(2)
$\mathrm{Cr}(3)-\mathrm{C}(11)$	2.22(2)	$\mathrm{Cr}(4)-\mathrm{C}(16)$	2.23(3)
$\mathrm{Cr}(3)-\mathrm{C}(12)$	2.24(2)	$\mathrm{Cr}(4)-\mathrm{C}(17)$	2.24(3)
$\mathrm{Cr}(3)-\mathrm{C}(13)$	2.23(2)	$\mathrm{Cr}(4)-\mathrm{C}(18)$	2.22(2)
$\mathrm{Cr}(3)-\mathrm{C}(14)$	2.23(2)	$\mathrm{Cr}(4)-\mathrm{C}(19)$	2.18(3)
$\mathrm{Cr}(3)-\mathrm{C}(15)$	2.25(2)	$\mathrm{Cr}(4)-\mathrm{C}(20)$	2.19(3)
$\mathrm{Cr}(2)-\mathrm{Cr}(1)-\mathrm{Cr}(3)$	63.2(1)	$\mathrm{Cr}(2)-\mathrm{Cr}(1)-\mathrm{Cr}(4)$	62.8(1)
$\mathrm{Cr}(3)-\mathrm{Cr}(1)-\mathrm{Cr}(4)$	59.8(1)	$\mathrm{Cr}(1)-\mathrm{Cr}(2)-\mathrm{Cr}(3)$	55.7(1)
$\mathrm{Cr}(1)-\mathrm{Cr}(2)-\mathrm{Cr}(4)$	60.3(1)	$\mathrm{Cr}(3)-\mathrm{Cr}(2)-\mathrm{Cr}(4)$	56.8(1)
$\mathrm{Cr}(1)-\mathrm{Cr}(3)-\mathrm{Cr}(2)$	61.2(1)	$\mathrm{Cr}(1)-\mathrm{Cr}(3)-\mathrm{Cr}(4)$	64.8(1)
$\mathrm{Cr}(2)-\mathrm{Cr}(3)-\mathrm{Cr}(4)$	63.7(1)	$\mathrm{Cr}(1)-\mathrm{Cr}(4)-\mathrm{Cr}(2)$	57.0(1)
$\mathrm{Cr}(1)-\mathrm{Cr}(4)-\mathrm{Cr}(3)$	55.4(1)	$\mathrm{Cr}(2)-\mathrm{Cr}(4)-\mathrm{Cr}(3)$	59.4(1)
$\mathrm{Cr}(2)-\mathrm{Se}(1)-\mathrm{Cr}(3)$	74.5(1)	$\mathrm{Cr}(2)-\mathrm{Se}(1)-\mathrm{Cr}(4)$	78.6(1)
$\mathrm{Cr}(3)-\mathrm{Se}(1)-\mathrm{Cr}(4)$	72.1(1)	$\mathrm{Cr}(1)-\mathrm{Se}(2)-\mathrm{Cr}(2)$	73.1(1)
$\mathrm{Cr}(1)-\mathrm{Se}(2)-\mathrm{Cr}(4)$	75.9(1)	$\mathrm{Cr}(2)-\mathrm{Se}(2)-\mathrm{Cr}(4)$	78.0(1)
$\mathrm{Cr}(1)-\mathrm{O}(1)-\mathrm{Cr}(2)$	98.9(5)	$\mathrm{Cr}(1)-\mathrm{O}(1)-\mathrm{Cr}(3)$	91.5(5)
$\mathrm{Cr}(2)-\mathrm{O}(1)-\mathrm{Cr}(3)$	102.7(5)	$\mathrm{Cr}(1)-\mathrm{O}(2)-\mathrm{Cr}(3)$	90.3(5)
$\mathrm{Cr}(1)-\mathrm{O}(2)-\mathrm{Cr}(4)$	102.4(6)	$\mathrm{Cr}(3)-\mathrm{O}(2)-\mathrm{Cr}(4)$	96.2(6)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{O}(2)$	87.5(5)	$\mathrm{O}(1)-\mathrm{Cr}(3)-\mathrm{O}(2)$	88.4(5)
$\mathrm{Se}(1)-\mathrm{Cr}(2)-\mathrm{Se}(2)$	100.1(1)	$\mathrm{Se}(1)-\mathrm{Cr}(4)-\mathrm{Se}(2)$	99.9(1)
$\mathrm{O}(1)-\mathrm{Cr}(1)-\mathrm{Se}(2)$	93.6(3)	$\mathrm{O}(2)-\mathrm{Cr}(1)-\mathrm{Se}(2)$	90.6(4)
$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{Se}(1)$	91.2(3)	$\mathrm{O}(1)-\mathrm{Cr}(2)-\mathrm{Se}(2)$	94.4(4)
$\mathrm{O}(1)-\mathrm{Cr}(3)-\mathrm{Se}(1)$	90.7(3)	$\mathrm{O}(1)-\mathrm{Cr}(3)-\mathrm{Se}(1)$	95.5(4)
$\mathrm{O}(2)-\mathrm{Cr}(4)-\mathrm{Se}(1)$	96.2(4)	$\mathrm{O}(2)-\mathrm{Cr}(4)-\mathrm{Se}(2)$	90.1(4)

nately occupying the corners of a cuboid. Atomic coordinates are listed in Table 5. Bond lengths and selected bond angles are given in Table 6. Table 7 shows a comparison with other chalcogen cubane structures and with $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$ (D_{2} symmetry) [21]. Molecule 4 conforms closely to C_{2} symmetry, with a two fold axis passing through the mid-points of the $\mathrm{Cr}(1)-\mathrm{Cr}(3)$ and $\mathrm{Cr}(2)-\mathrm{Cr}(4)$ bonds. As one of the few examples of μ_{3}-oxo metal clusters known to date [$20-23,25-33$], 4 is the second known tetranuclear Cr cluster, after $\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}$, of which it can be considered a Se derivative. Interest in such μ_{3}-oxo complexes lies in their role as models for catalytically active metal oxides and in the similarity of their bonding mode to that of oxygen atoms bonded to surfaces [34].
Table 7
Comparison of selected bond lengths (\AA) and angles (deg) in some related cubane-like structures ${ }^{\text {a }}$

	$\mathrm{CP}_{4} \mathrm{Cr}_{4} \mathrm{~S}_{4}{ }^{\text {b }}$	$\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{~S}_{2}{ }^{\text {c,d }}$	$\mathrm{Cp}_{4} \mathrm{Cr}_{4}(\mathrm{CO})_{2} \mathrm{Se}_{2}{ }^{\text {dee (}}$ ($)$	$\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{2} \mathrm{Se}_{2}{ }^{\text {e }}$ (4)	$\mathrm{Cp}_{4} \mathrm{Cr}_{4} \mathrm{O}_{4}{ }^{\text {I }}$
$\mathrm{Cr}-\mathrm{Cr}$	2.818-2.891	$2.651-2.773$	2.733-2.848	2.748-3.093	2.702-2.900
$\mathrm{Cr}-\mathrm{Cr}-\mathrm{Cr}$	58.7-61.2	57.2-61.6	57.6-61.6	55.4-64.8	$56.2-63.4$
$\mathrm{E}-\mathrm{Cr}$	2.255-2.263	2.218- 2.267	2.317- 2.402	2.441- 2.462	
$\mathrm{E}^{\prime}-\mathrm{Cr}$				1.90-1.94	1.918-1.949
$\mathrm{E}-\mathrm{Cr}-\mathrm{E}$	98.6-102.3	$100.8-106.2$	$102.2-107.3$	99.9-100.1	
$\mathrm{E}^{\prime}-\mathrm{Cr}-\mathrm{E}^{\prime}$				87.5-88.4	83.1 -90.4
$\mathrm{Cr}-\mathrm{E}-\mathrm{Cr}$	77.1 - 79.7	73.0-76.4	71.7-74.2	$72.1-78.6$	
$\mathrm{Cr}-\mathrm{E}^{\prime}-\mathrm{Cr}$				90.3 -102.7	88.4

${ }^{a} \mathrm{E}=\mathrm{S}, \mathrm{Se} ; \mathrm{E}^{\prime}=0 .{ }^{b}$ Ref. 24. ${ }^{\mathrm{c}}$ Ref. 8. ${ }^{d} \mathrm{CO}$ and E are indistinguishable due to disorder. ${ }^{c}$ This work. ${ }^{f}$ Ref. 21.

Acknowledgements

Financial support from the University of Malaya and the Ming Yu Cultural Foundation (Grant No. 636011000 adminstered by the Chinese University of Hong Kong) is gratefully acknowledged. The authors also wish to thank Dr. Chen Wei of the University of Malaya for preliminary work in the X-ray diffraction study of 2.

References

1 (a) H. Vahrenkamp, in A. Müller and E. Diemann (Eds.), Transition Metal Chemistry-Current Problems of General, Biological and Catalytic Relevance, Verlag Chemie, 1981; p. 35 and references, therein; (b) H. Vahrenkamp, Philos. Trans. R. Soc. London, A, 1982, No. 308, 17 and ref. therein.
2 D.A. Roberts and G.L. Geoffroy, in G. Wilkinson, F.G.A. Stone, and E. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982; Chapter 40.
3 M.I. Bruce, J. Organomet. Chem., 257 (1982) 417.
4 K. Fisher, M. Müller, and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 23 (1984) 140 and ref. therein.
5 (a) H. Vahrenkamp, Angew. Chem. Int. Ed. Engl., 14 (1975) 322; (b) F. Richter and H. Vahrenkamp, ibid., 19 (1980) 65; 18 (1979) 531; (c) H. Vahrenkamp and E.J. Wucherer, ibid., 20 (1981) 680.
6 R.D. Adams, J.E. Babin, and K. Natarajan, J. Am. Chem. Soc., 108 (1986) 3518 and ref. therein.
7 L. Markó, Gazz. Chim. Ital., 109 (1979) 247.
8 W. Chen, L.Y. Goh, and T.C.W. Mak, Organometallics, 5 (1986) 1997.
9 G.W. Haupt, J. Res. Nat. Bur. Standards, 48 (1952) 414.
10 R. Birdwhistell, R. Hackett, and A.R. Manning, J. Organomet. Chem., 157 (1978) 239.
11 L.Y. Goh, W. Chen, and E. Sinn, J. Chem. Soc. Chem. Commun., (1985) 462.
12 W.A. Herrmann, J. Rohrmann, H. Noth, Ch.K. Narula, I. Bernal, and M. Draux, J. Organomet. Chem., 284 (1985) 189; 315 (1986) C41.
13 R.A. Sparks, in F.R. Ahmed (Ed.), Crystallographic Computing Techniques, Munksgaard, Copenhagen, 1976, p. 452.
14 G. Kopfmann and R. Huber, Acta Crystallogr. A, 24 (1968) 348.
15 A.C.T. North, D.C. Phillips, and F.S. Matthews, Acta Crystallogr. A, 24 (1968) 351.
16 R. Diamond, Acta Crystallogr. A, 25 (1969) 43.
17 G.M. Sheldrick, in D. Sayre, (Ed.), Computational Crystallography, Oxford Univ. Press, New York, 1982, p. 506.
18 International Tables for X-ray Crystallography, vol. 4, Kynoch Press, Birmingham, England, 1973, p. 55, 99, 149.
19 J.W. Schilling, in F.R. Ahmed (Ed.), Crystallographic Computing, Munksgaard, Copenhagen, 1970, p. 201.

20 F. Bottomley, D.F. Drummond, G.O. Egharevba, and P.S. White, Organometallics, 5 (1986) 1620.
21 F. Bottomley, D.E. Paez, and P.S. White, J. Am. Chem. Soc., (a) 103 (1981) 5581; (b) 104 (1982) 5651.

22 F. Bottomley, D.E. Paez, L. Sutin, and P.S. White, J. Chem. Soc. Chem. Commun., (1985) 597.
23 E.O. Fischer, K. Ulm, and H.P. Fritz, Chem. Ber., 93 (1960) 2167.
24 W. Chen, L.Y. Goh, R.F. Bryan, and E. Sinn, Acta Crystallogr. C: Cryst. Struct. Commun., C, 42 (1986) 796.

25 V.A. Uchtman and L.F. Dahl, J. Am. Chem. Soc., 91 (1969) 3763.
26 (a) A. Bertolucci, M. Freni, P. Romiti, G. Ciani, A. Sironi, and V.G. Albano, J. Organomet. Chem., 113 (1976) C61; (b) G. Ciani, A. Sironi, and V.G. Albano, J. Chem. Soc. Dalton, (1977) 1667.
27 D. Bright, J. Chem. Soc. Chem. Commun., (1970) 1169.
28 J.A. Beaver and M.G.B. Drew, J. Chem. Soc. Dalton, (1973) 1376.
29 R.J. Goudsmit, B.F.G. Johnson, J. Lewis, P.R. Raithby, and K.H. Whitmire, J. Chem. Soc. Chem. Commun., (1983) 246.
30 A. Ceriotti, L. Resconi, F. Demartin, G. Longoni, M. Manassero, and M. Sansoni, J. Organomet. Chem., 249 (1983) C35.

31 C.P. Gibson, J-S. Huang, and L.F. Dahl, Organometallics, 5 (1986) 1676.
32 A. Colombié, J-J. Bonnet, P. Fompeyrine, G. Lavigne, and S. Sunshine, Organometallics, 5 (1986) 1154 and ref. therein.
33 F. Bottomley, D.F. Drummond, D.E. Paez, and P.S. White, J. Chem. Soc. Chem. Commun., (1986) 1752 and ref. therein.
34 G.A. Somorjai, Chemistry in Two Dimensions: Surfaces, Cornell University Press, Ithaca, N.Y., USA 1981, Ch. 5

[^0]: ${ }^{a}$ Measured in benzene- d_{6} at ambient temperature unless otherwise specified. Chemical shifts (singlets assigned to $\mathrm{C}_{5} \mathrm{H}_{5}$ unless otherwise stated) referenced to residual benzene in $\mathrm{C}_{6} \mathrm{D}_{6}{ }^{6}$ Abbreviations: vs very strong, s strong, m medium, w weak, ww very weak, sh shoulder, br broad, vbr very broad. ${ }^{\text {c }}$ Electron-impact low resolution spectra. ${ }^{d}$ Identical δ 's in toluene- d_{8}. Exhibits variable-temperature behaviour. At $-90^{\circ} \mathrm{C}, \delta 5.28$ and 4.91 . ${ }^{6}$ Relative intensity $1.6 / 1 .{ }^{\delta}$ In toluene- d_{g}. At $-90^{\circ} \mathrm{C}, \delta$ $9.8\left(\nu_{1 / 2} 24 \mathrm{~Hz}\right)$, and 5.03 , relative intensity ca. $2 / 1 .{ }^{8}$ In toluene- d_{g} at $-90^{\circ} \mathrm{C} .{ }^{h}$ Varies between $\delta 2.03$ and $2.62 .^{i}$ In toluene- d_{8} at $-90^{\circ} \mathrm{C}, 0^{\circ} \mathrm{C}, 45^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively.

[^1]: ${ }^{a}$ Equivalent isotropic temperature factor U_{∞} defined as $1 / 3$ of the trace of the orthogonalised U matrix.
 ${ }^{b}$ Site occupancy factors are $1 / 2$ for $\mathrm{O}(1)$ and $\mathrm{O}(2), 0.617$ (4) (incorporating the scattering power of the superimposed C atom) for $\mathrm{Se}(1)$ and $\mathrm{Se}(2)$, and unity for the other atoms.

